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ABSTRACT

We present the results of extensive numerical experiments of the spatially periodic ini-
tial value problem for the Kuramoto-Sivashinsky equation. Our concern is with the asymp-
totic nonlinear dynamics as the dissipation parameter.decreases and spatio-temporal chaos sets
in. To this end the initial condition is taken to be the same for all numerical experiments (a
single sine wave is used) and the large time evolutiot, of the system is followed numerically.
Numerous computations were performed to establish the existence of windows, in parameter
space, in which the solution has the following characteristics as the viscosity is decreased: A
steady fully modal attractor to a steady bimodal attractor to another steady fully modal attrac-
tor to a steady trimodal attract to a periodic (in time) attractor, to another steady fully
modal attractor, to another time-periodic attractor, to a steady tetramodal attractor, to another
time-periodic attractor having a full sequence of period-doublings (in the parameter space) to
chaos. Numerous solutions are presented which provide conclusive evidence of the period-
doubling cascades which precede chaos for this infinite-dimensional dynamical system. These
results permit a computation of the lengths of subwindows which in turn provide an estimate
for their successive ratios as the cascade develops. A calculation based on the numerical
results is also presented to show that the period doubling sequences found here for the
Kuramoto-Sivashinsky equation, are in complete agreement with Feigenbaum's universal con-
stant of 4.669201609... . Some preliminary work shows several other windows following the
first chaotic one including periodic, chaotic and a steady octamodal window; however the
windows shrink significantly in size to enable concrete quantitative conclusions to be made.
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Contract No. NASI-18605 while the authors were in residence at the Institute of Computer Applications in Sci-
ence and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. Additional support for
the second author wa.q inovided by ONR Grant N-00014-86-K-0691 while he was at UCLA.
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1. Introduction.

The present study is concerned with the long time behavior of the one-dimensional Kuramoto-

Sivashinsky (KS) equation, conveniently normalized as

U, + UU, + U" + Vu==. =0,

(x,t) e R'xR+ ,(1)

u(x,O)=uo(x) , u(x+2x,t)=u(x,t)

The parameter v is positive and takes the role of the viscosity of the system.

The long time behavior of the KS equation is characterized by the negative - therefore destabiliz-

ing - second order diffusion, the positive - therefore stabilizing - fourth order dissipation and the non-

linear coupling term. As soon as the value of v decreases below I at least one Fourier frequency

becomes unstable in the linearized model. Nevertheless the solution does not grow exponentially fast

as the linear analysis around the null state would suggest but instead stays bounded due to the transfer

of energy from the linearly unstable low modes, the number of which Is mod(v-1a), to tei linearly

stable high modes. The previous statement has been observed numerically and also established analyti-

cally (see Constantin et a). 18).)

A very attractive feature of (1.1), is that even though it appears to be a very simple partial

differential equation it produces complicated dynamics in both space and time (chaotic behavior). The

equation arises in a variety of physical problems, such as in chemical physics for propagation of con-

centration waves (Kuramoto [24], Kuramoto and Tsuzukl [251,[26]), plasma physics (Cohen et a. [6]),

flame propagation (Sivashinsky [35]), reaction diffusion combustion dynamics (Sivashlnsky [361), free

surface film-flows (Benney (4], Sivashinsky and Michelson (371, Shlang and Sivashinsky (331, Hooper

and Grimshaw [17]), and two-phase flows in cylindrical geometries (Frenkel et al. [13], Papageorgiou

et al. [31]).

There have been numerous computational studies of (1.1) (Cohen et al. [6], Sivashinsky and

Michelson (371, Aimar [1], Manneville 1291, Frisch, She and Thual 114), Hyman and Nicolaenko 1181,

Hyman, Nicolaenko and Zaleski [19], Kevrekidis, Nicolaenko and Scovel (221, Greene and Kim [15]

to mention a few), as well as analytical ones ( Constantin et al. [8], Foias et al. [121, Babin and Vishik

[31, etc.). The overall picture that emerges is that as the viscosity parameter v is decreased, the large

time behavior of the system varies from steady-state (for example cellular) solutions to complicated

time-oscillatory (chaotic) ones. Such behavior has led to the conjecture that the solution behaves

according to low modal dynamics with the determining number of Fourier modes being proportional to
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v- 12 (i.e. Pomeau and Manneville [32]). Significant analytical results have provided estimates for the

dimension and the nature of the global attractor (see [8],[12]), but the number of determining modes

has not yet been estimated mathematically with satisfactory accuracy and thus we chose initially to

integrate the partial differential equation directly rather than work with a truncated system. A truncated

system of coupled nonlinear ODE's for the Fourier coefficients was also integrated and the number of

determining coefficients was established experimentally. Since the dynamic behavior of the system is

of a low modal structure (see earlier references), we found that ail the important phenomena, for exam-

ple period doubling cascades to chaos, are completely captured by a truncated system - this was

verified by comparison of numerical solutions of the infinite dimensional dynamical system (PDE) and

the truncated finite dimensional one, with emphasis on a window that yields a sequence of eight period

doublings before chaos sets in. From hindsight we discovered that in the cases of the smaller values

of v studied here, as many as approximately 40 coupled nonlinear equations must be retained if the

time-periodic solutions are to be described with satisfactory accuracy.

Of particular relevance to the present work arc the studies of lyman and Nicolaenko 118] (also

Hyman et al. [19], Kevrekides et al. [221, and Jolly et al. [20]). These studies are mostly concerned

with the extensive numerical study of the related KS equation for the integral in space of our function

u (x ,t). The equation used is

u, + 4u. + a(u", + -u, 2 ) = 0

(x,t) E R'xR+  , (1.2)

u(x,O)=uo(X) , u(x+2x,t)=u(x,t)

The parameter (x above is related to v by x = 4/v. The range of a used was 4 :5 (E < 120, which

corresponds to 1/30 5 v < 1. Various attractors were constructed by changing the initial condition as

well as a, by continuation methods where the initial condition is renormalized to its current value

before a is changed. The bifurcation diagram reported contains windows of various attractors (fully

modal, bimodal, trimodal and tetramodal fixed points) separated by oscillatory or chaotic orbits. A

time-periodic orbit is reported in a small window 17.30 t a 22.50.

The current study obtains a bifurcation diagram which is analogous to the above, but some essen-

tial differences must be pointed out. First of all, our concern is not with the full description of the

inertlial manifolds which are by no means easy to obtain since the Initial conditions belong to an

infinite-dimensional vector-space. Instead we want to investigate transition to chaos, which, as we

have observed, occurs according to th! classical routes of period-doubling bifurcations. Such



-3-

transitions to chaos have been described for iteration maps (Feigenbaum [10], Collet and Eckman [7],

see Devaney [9] for a full description) as well as for low dimensional systems of ordinary differential

equations such as the forced Duffing equation which is a second order system, and for the Lorenz

attractor (see Guckenheimer and Holmes [16] and references therein). Numerical evidence of a period-

doubling sequence has been presented by Knoblock et al. [231 and Lennie et al. [27] for the two-

dimensional convection in a Boussinesq fluid. Many interesting results have also been found for the

Ginzburg-Landau equation by Keefe [21] (see also Moon, lluerm and Redekopp [301, Sirovich and

Rodriguez [35]) including a period-doubling sequence that supports an accurate estimate for the

Feigenbaum number. Finally evidence of a period-doubling sequence has been discovered for a trun-

cated model of the Kuramoto-Sivashinsky equation by Brown et al. [5] (see also Jolly et. al [201); two

period-doublings are reported in a window which corresponds to the tiny range

0.121223 < v 0.121304 for our problem. In tie results we present here the initial condition is taken

to be the same for all v. Global attractors are insensitive to such a choice, but in regimes where the

solution becomes time-periodic and period-doubling bifurcations take place the present choice of initial

condition enables both an accurate large-time integration as well as a quantification of the cascades

(see later also). We emphasize here that in this article we exclude a complete study of the phase-space

of initial conditions.

The structure of the paper is as follows. Section 2 describes the numerical methods used, while

in Section 3 we begin to describe each window separately by showing representative numerical experi-

ments in each case. Here we describe the first five windows which support solutions that are steady (i)

(fully modal, bimodal, fully modal again, trimodal), time-periodic (ii), fully modal steady (iii), time-

periodic again (iv) and steady tetramodal (v). In Section 4 results for the sixth window and beyond

are given; the sixth window is time-periodic and contains a complete infinite sequence of period-

doubling bifurcations leading to chaos. Results are presented for both a direct simulation (classLil

many mode discretization) and a truncated model (traditional Galerkin) with the low modal beha- ,or of

the dynamical system clearly brought out. The results are used to compute the Feigenbaum number for

the cascade which is found to be in excellent agreement with Feigenbaum's universal theory. This

Section also includes some preliminary results of solutions at smaller v showing .c appearance of

steady attractors of decreasing spatial period; time-periodicity and chaotic behavic, persist as expected.
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2. Numerical methods.

As mentioned earlier, our concern here Is primarily with the numerical simulation of (1.1). Two

numerical methodologies are used: A classical numerical discretizadon with many degrees of freedom

(which we term the "direct" method) and a traditional Galerkin projection onto a low-dimensional iner-

tial manifold that yields a coupled no".inear system of ODE's to solve. In the former case we choose

to perform the time integratior by treating the linear part of the operator in Fourier space, and the non-

linear term in real space by a scheme that does not add numerical viscosity. This split step method

maintains second order accuracy by the repeated application of the semi-groups, as suggested by the

Strang split method. The time-step is chosen adaptively subject to several controls that ensure both

numerical stability and high accuracy; the error in the experiments reported here is kept well below the

10- level. Such requirement is necessary to capture the nonlinear coupling of Fourier modes that are

undergoing period-doubling cascades. For the Galerkin projection the Fourier coefficients were com-

puted for a pre-determined dimension; a fourth order Runge-Kutta method was used to advance the

nonlinear part in time, while the linear part was treated exactly by use of the split method described

above together with repeated semi-group applicatiQn that maintains overall accuracy. A natural accu-

racy test, throughout the computation, is the conservation of the spatial integral of u. The initial condi-

tion used is

uo(x) = -sin(x)

and a consequence of this is that the Integral over a spatial period vanishes for all time, and further

more the solution maintains its odd parity. More generally, If the spatial profile of the solution Is Ini-

tially of the form

u(x,O)=Xat sin kx
ktl

then the mechanisms of the evolution of the partial differential equation respect this structure since,

UX, + V u,._ = - (k - vk4) ak sin kx
k~l

and the nonlinear part becomes,

uu, - (u 2 ). ak sin kx) =

-"' -- Y,( -(Ja+aX - I I a.a,)) sin kx.
Tpl c of s lmk

Thus the spatial profile remains a linear combination of sines for all times, L~e.
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u(x,t) = . ak(t) sin kx
k A

Due to the above observation the PDE (1.1) becomes equivalent to an infinite dimensional system of

ordinary differential equations for ak's, i.e.

ak = (k2 - vk 4) ak + -- (-ak+xax - - a a) for k k 1 . (2.1)

The odd-parity property was utilized by a suitable filtering of Fourier coefficients; the filtering toler-

ance was set to a value between 10-10 and 10-12. In the case of the direct computation the spatial

discretizations were done on grids ranging from 128 to 1024 points. For windows other than the first

steady attractor, at least 512 points were used. Results that are obtained by the projection method will

be pointed out together with the number of modes retained for the dynamical system.

The results presented here were produced after several hundreds of numerical experiments which

tracked the time evolution of the profile, Its Fourier modes, its energy (L -norm) and the phase-plane

of the energy and in some marginal cases of certain Fourier coefficients. The time evolution of the

energy is very representative of the structure of the various attractors. Steady-state attractors evolve to

a constant large-time state, while periodic or chaotic solutions have a time-oscillatory energy profile.

Near window and subwindow (period-doubling) boundaries for the smaller values of v at least, the

time integration required as many as 200 time units (8x105 time steps) in order to sharply classify the

v-windows and subwindows. All periodic solutions reported here were derived by a phase-plane

analysis of the data. As is described in the next Section many period-doubling bifurcations are evi-

denced from the phase-plane, which Is used in conjunction with energy plots to build the geometrical

structure of the solution in one time-period and so accurately estimate the the v-position of the hyper-

bolic point corresponding to a period-doubling bifurcation, for example. Table I presents a summary

of all windows discovered so far, together with sharp computed estimates of window boundaries.

3. Detailed numerical experiments. Pre-chaotic windows.

When the parameter v decreases below unity, the solution undergoes its first Hopf bifurcation. In

this Section we give a description of the dynamics in each of the first five windows.

(i) Steady attractors, .05985 < v < 1.

The main characteristic of this window, Is the attraction of the initial profile to a steady-state. The

steady-state is approached exponentially fast and is numerically achieved after a relatively short time
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(5-10 time units in most cases). However the numerical convergence to the steady steady state Is

significantly delayed towards the lower end of the window where the first periodic attractor sets in. We

subdivide the window into the following four subwindows

(a) A fully modal steady attractor when .248 < v < I .

(b) A bimodal steady attractor (i.e. where all the odd frequencies vanish) when .0758 < v < .247

(c) Another fully modal steady attractor when .06697 5 v 5 .0758.

(d) A trimoda steady attractor (where only the frequencies which are multiples of three survive) when

.05985 ,5 v 5 .06695.

For values of v near the lower boundary in fact, we find that there are about 30 modes which

have an amplitude larger than 10-6. In Figures (1.1), (1.2) and (1.3) we give sets of these attracting

profiles for different decreasing values of v; Figures (1.la) and (1.lb) cover ranges of v in the first

subwindow. Figure (1.2a) covers a range of v at the ower end of the first subwlndow as well as at

the upper end of the second subwindow indicating a smooth transition from the fully modal first

subwindow to the bimodal second subwindow. Figure (l.2b) also covers a range of v in the second

subwindow, whereas figure (l.3a) covers a range in the third subwindow where the attracting profiles

are trimodal. Comparison of figures (1.2b) and (l.3a) provides the indication that the transition of the

attracting profiles between the two subwindG.,vs is smooth. Finally figure (l.3b) covers a range of

values of v In the fourth and last subwindow where the attracting steady profiles are trimodal. The

change in the shape of the limiting profiles In this subwindow is hardly visible, even though v changes
"significantly" from .06695 to .06 . This is not surprising since under a similarity rescaling (see below)

they correspond to fully modal steady profiles for v between .54 and .603 where not much change Is

observed either.

For values of v which are near 1, the profile is qualitatively similar to a sine wave. As v

decreases, however, one more maximum and one more minimum are obtained after the profile attains

an Inflection at the anti-symmetry line x = it. Such solutions were also obtained by Frisch et al. (141

for values of v larger than or equal to 0.35; as a result of this they did not see profiles with four turn-

ing points. It is Interesting at this point to describe an important property of the steady KS equation; if

u(x) is a solution corresponding to a viscosity v of the ODE obtained by dropping the time depen-

dence in (1.1 ), then for any integer N there exists another solution Nu (Nx) with viscosity v/N 2. Due to

the periodic boundary conditions used here, N must be an Integer. This self-similar property of the

ordinary differential equation, satisfied by the steady states of the KS equation, permits the generation

of a one parameter family of steady-states which grow in amplitude and decrease in period. In sub-
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section (v), the tetramodal attractor, we give a numerical example of this self-similar property connect-

ing steady-states for N = 4.

(ii) Time periodic attractors. .055238 ! v < .0599.

The large time evolution of our Initial value probleia for v lying in the range covered by this

window, is attraction to a time-periodic orbit. In all the results presented here, the period is defined for

the energy ( L 2-norm ) of the solution. It is clear that the solution itself can have half the period of

the energy but such a case was not observed when the Fourier coefficients were considered individu-

ally. Periodicity is determined by examination of the energy phase-plane ( E versus dE/dt ), and the

period is evaluated from the evolution of the energy with time. All the solutions in this window are

fully modal, and are characterized by a time-periodicity (the time period will be denoted by t ) which

begins at a value of approximately t = 1.0183, increases slowly to -i = 1.18 at a value of v = .059 and

then doubles to t = 2.374 at a value of v = .0559. The doubling is instantaneous, in parameter space,

and comes about by a slight disalignment of the maxima and minima of the energy-time graph. Some

representative results from this window are given in Figures (2.1a,b)-(2.3a,b). The solution undergoes a

period doubling as is evidenced by comparison of th phase-planes at v = 057 and v = .0559 - see

Figures (2.1a), (2.2a). Figures (2.3a,b) correspond to v = .0555 and it can be seen that the 4-cycle pro-

perty of the phase diagram is much more pronounced than at the slightly higher value of v = .0559;

such drastic changes in the dynamics over small domains of the parameter space are typical and are

encountered later on also. A summary of the results from this window is contained in Table 2.

(iii) Steady fully modal attractors. .03965 < v ! .055235.

Here a new steady window is found with fully modal solutions which do not correspond to a res-

caled value of the parameter v under the self-similar scaling described earlier. The new element here

is the extremely slow convergence, still exponential nevertheless, towards the fixed point attractor. At

such values of v the equations must be Integrated to long times; this is to be expected since a straight-

forward perturbation analysis above the window-boundary yields a rate of decay of the distance (for

example the L2-norm) from the attractor, which Is inversely proportional to the perturbation of v from

the boundary. This is illustrated in Figures (3.1a)-(3.Ic) for v = .0397. Figure (3.1a) shows the varia-

tion of the energy with time, while Figures (3.1b).and (3.1c) show the variation with time of the L-

norm and the L- norm of the gradient of the solulion respectively. It can be seen, that Initially the

solution passes through an oscillatory and almost periodic stage, and at a time of approximately 20

units its amplitude follows an envelope that takes the profile into the stationary attractor. In fact
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during the oscillatory stage, the phase-plane of the energy is similar to that of the periodic window

described next; once the steady-state begins its attraction the phase curve converges to a sink of course.

(iv) Time periodic attractors. .03735 S v < .0396.

Periodicity is again determined by examination of the energy phase-plane, and likewise the period

is computed from the energy versus time plots. In this window the period begins at a value of approx-

imately T = .515 when v = .0396, with a very slow convergence to the periodic attractor, and it

increases smoothly, in parameter space, until it reaches the value t = .684 when v = .03798 with a

much faster convergence to the the limit circle; the period then suddenly doubles to r = 1.37 at a value

of v = .03795. As v is decreased further, the period undergoes a new slow increase to reach a value

,r = 1.43 at v = .0377; a small decrease of v to a value .0376 gives a new period doubling with

"c = 2.87. The period again increases slowly to a value 'c = 3.0 at v = .03736. At this point a slight

decrease of v to the value v = .037355 gives a period-halving with the energy having a period i = 1.5.

The last value of v computed in this window is v = .03735, for which the period is t = 1.5. The next

numerical experiment with v = .037345 is outside this time-periodic window and yields a tetramodal

steady-state (see later). These results are summarized in Table 3.

The results of Table 3 were obtained after numerous computations together with a careful exami-

nation of the oscillatory dynamics by means of phase-plane analysis, and representative solutions are

given here. Some cases are described in full including the variation and phase-planes of certain Fourier

modes, while other cases are described by tie energy time series amid the energy phase-plane. These

two plots are enough to conclude periodicity of solutions and their periods. In Figures (4.la-d) we

present results for v = .038 which is a representative parameter at the beginning of the window. These

Figures show the variation of the energy with time, the energy phase-plane, and the phase planes of the

first and tenth Fourier modes respectively; time periodicity o, solutions is clear and we note that the

Energy phase plane (Figure (4.1b)) Is traced out 21 times since the time interval It depicts contains 21

periods. The time period of Fourier coefficients is the same as that for the energy, a fact that need not

hold in general (see earlier comments); the reason it holds in the cases presented by this article, is that

the actual solution u (x,t) has a non-zero mean part in general.

As has been mentioned already (Table 3), a period-doubling takes place at v = .03795. This is

evidenced very clearly in the phase-plane of the energy for this case which is given by Figure (4.2a).

The phase-plane consists of two loops which are initially almost coincident (in fact they were coin-

cident at v = .038) and this change produces the period-doubling. The corresponding energy variation



-9-

with time can be found in Figure (4.2b), from which the period is calculated to have a value of 1.37.

The mechanism of the period doubling can also be seen from (4.2b), where every other wave crest and

trough are reduced/increased slightly thus producing a phase-plane of index two and a period-doubling.

We note also that there is no abrupt change in the wave-form that undergoes a period-doubling; only

the value of the period doubles abruptly. Next we reduce the value of v by 5x10 - 5 to v = .0379. We

are still in the same subwindow, but the phase plane diagram is now much more pronounced as Figure

(4.3a) shows. The results for the last v from this subwlndow Is presented in Figures (4.3b), (4.3c) and

(4.3d) which correspond to the phase-planes of the energy, the first and sixth Fourier coefficients

respectively, at a value of v = .0377.

A reduction of v to the value .0376 brings us into a new subwindow with the solution undergo-

ing a period doubling. Evidence for this can be found in Figure (4.4a) which depicts the phase-plane

of the Energy at v = .0376; the time period is t = 2.87; Figures (4.4b) and (4.4c) are also given to

show the evolution of the sixth Fourier coefficient with time and its corresponding phase-plane. The

time-periodicity Is again clear and similar results were found for all leading order (i.e. large enough for

graphical purposes) Fourier coefficients. Such results are of course expected but they serve as a strict

check on the numerical accuracy of the solutions so that we can confidently state that the time oscilla-

tions are by no means spurious, but in fact persist in a regular and accurate manner. The last case

computed in this subwindow has v = .03736. The energy evolution and phase plane curves are given

in Figures (4.5a) and (4.5b). The solution is just about to undergo a period halving and the index two

property of the phase plane is only just discernible. A reduction of v to the value .037355 gave a

period halving, and Figure (4.5c) shows the energy phase-plane for the last member of this window

that was computed, v = .03735. . As expected, the mechanism that produced period-doublings is now

working the opposite way to produce period-halvings (similar windows were also found by Knoblock

et al. [231 for a convection problem). As mentioned earlier, a numerical experiment with v = .037345

produced a tetramodal steady-state which is representative of the window described next.

It is also interesting to observe the spatio-temporal evolution of the profiles, and we present this

for two representative values of v from this window, v = .039 and .0375 respectively. The way this is

done is by plotting on the same diagram the solution at successive increasing times. To make the evo-

lution clearer the profiles are shifted vertically at each time interval producing pictures that capture the

spatio-temporal evolution and in particular the time-periodicity of the qnlutions. Figure (4.6)

corresponds to v = .039 while Figure (4.7) shows the results for v = .0375.
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(v) Steady tetramodal attrac" - -s. .037348 , v ! .0344.

We present only one case (v = .0373) from this window since the results are qualitatively similar,

the difference being in tie final amplitude of the solution. For v = .0373, therefore, a steady-state Is

reached after approximately seven time units. The evolution of the energy is shown in Figure (5.1a)

from which it is seen that after a few oscillations in time, the solutic., gzts attracted to a tetramodal

steady-state; this was determined from inspection of the Fourier coefficients. The corresponding profile

at t = 10 is depicted in Figure (5.1b) which clearly shows the tetramodal character of the solution.

This means that tie solution is spatially periodic and of period r2. Further more, this solution is

obtainable from the self-similar re-scaling (see earlier) of the bimodal steady state at v = ." 92 with

the value of N = 2. This was checked and agreement is excellent.

4. Complete period-doubling cascade to chaos and computation of the Feigenbaum number.

(vi) Time periodic attractors. Complete period-doubling sequence. .0299756 v .0343.

This window is to our view, the most important found in this work, and for this reason we con-

centrate on the results it produces rather than try to sharpen and classify the bifurcation diagram at

higher values of the viscosity (the classification of the bifurcation diagram at high values of v has been

the subject of extensive numerical and analytical studies by various authors - [ 18],[191, [201[211). The

importance of this window is two-fold. First, it supports solutions that start as laminar steady -states

(tetramodal waves) and then become time-periodic (this is also the case for window (iv) above).

Second, the tim!-periods of the solution undergo a complete sequence of period-doubling bifurcations

as the viscosity v Is decreased, resulting in an accumulation point beyond which the solution is chaotic.

Remarkably enough as many as 5 period-doubling bifurcations were accurately computed by the direct

method and 8 period-doublings for the Galerkin procedure. This enables, for the first time, the accu-

rate computation of the Feigenbaum number for the Kuramoto-Sivashinsky equation. Other investiga-

tions of PDE systems found results that were consistent with the universal Feigenbaurn constant but no

conclusive evidence was shown (see for example Knoblock et al. 122] for a convection problem, and

Jolly et al. [20] for the KS equation). Significant results were obtained by Keefe [211, however, for

the Ginzburg-Landau equation. After extensive numerical computations of even periodic solutions

Keefe found a window containing a complete sequence of period-doubling bifurcations; the first five

bifurcations were accurately obtained and based on the results the Feigenbaum number for the cascade

was estimated to be approximately 4.4 to 4.7. The numerical method u. d in [211 was a pseudo-
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spectral one with a 32 mode discretization. We mention here that these bifurcations take place on very

small scales, in parameter space, and require a tot of care numerically, as well as an extensive compu-

tational effort towards a fairly sharp estimation of subwindow lengths (a subwindow should be under-

stood to be a region In parameter space that separates period-doubling parameter values). We begin this

section by presenting the results of the direct method by use of at least 512 Fourier modes. Most of the

evidence from this approach is graphical and serves to show numerous period-doublings through

phase-plane analysis. We also re-computed this same window by means of a truncated model that

retains the leading 36 Fourier modes. The results of the two methods agree to at least 4 decimal

places (by results here we mean the positions in v-space of the various subwindows); a quantitative

analysis of the results obtained from the 36-mode Galerkin expansion enables the accurate computation

of the universal Feigenbaum number of the cascade (see later for details).

The direct computation of the PDE provides results for the first six subwindows over which the

solution attains five period-doublings. Improvement to a sixth period-doubling would require a substan-

tial amount of computational resources and is wise at this point to turn to finite-dimensional versions

of the equations. For example computations that retain 36 Fourier modes are in general at least 8 times

faster than direct computations; in the absence of shaqr.analytical results direct computations are essen-

tial in gauging the accuracy or sufficiency of truncated models. As mentioned already, 36 modes are

capable of capturing a complete set of period-doubling bifurcations that precede chaos, and more

importantly are in complete agreement with the Feigenbaum universal constant. To give an example of

the numerical restrictions that are present in either direct or finite-dimensional approaches, our direct

numerical solutions for v = .0299756 gave a time periodic solution with 'r = 7.04 while at v = .02997

the solutions appear to be chaotic. In a distance of less than 5.6x10 -5 , therefore, numerous period-

doubling bifurcations take place (to conjecture an infinite number would be too hasty because the

chaotic solution at v = .02997 can be thought of as an oscillatory solution with a very large period; the

period is so large that discourages any attempt at its numerical computation). It can be seen, therefore,

that we would very soon run out of computational accuracy, since subwindow lengths would be of the

same order as computer round-off error. We decided, therefore, to concentrate on the first five subwin-

dows (eight for the 36 mode model) and compute the Feigenbaum number from these.

For brevity of the description we will restrict our presentation to phase-plane curves of the

energy. Each case presented was computed with 512 Fourier modes and approximately 4x10 4 time

steps (a run takes about 20 minutes CPU time on a CRAY-Il and about 4 hours CPU time on a

SPARC work-station; all runs use double precision). Accuracy tests were also made for many runs by

use of 1024 Fourier modes; all results reported here arc insensitive to such refinements as the truncated
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system also shows (see later). We give representative results from each subwindow and show the

behavior near subwindow boundaries. The steady tetramodal solution gets attracted to a time-periodic

orbit when v is reduced below a value of .0345. The phase-plane of the L2-norm of the solution is a

1-cycle initially. In Figure (6.1a) the phase plane for v = .0342 Is shown over a time interval from 1.0

to 34.5. It is clear that the solution gets attracted to a time-periodic orbit of Index 1; the period is 0.37.

As v is decreased the period increases smoothly and the I-cycle topology of the phase-plane persists

until the first period doubling suddenly appears at a value of v just above .0304. The phase-plane

corresponding to v = .0304 is not shown because the period-doubling bifurcation has just taken place

and within graphical accuracy the phase-plane appears to have the same topology as in the previous

subwindow. Careful inspection of the left side of the curve, however, shows that there are two distinct

branches; the period of the solution is 0.89. The two branches begin to move apart as v decreases

further. An example of this change In the phase-plane, which in turn corresponds to a change in the

oscillatory structure of the solution, is seen in Figures (6.lb-c); the value of v is .0303 and the period

is the same as before, t = 0.89. The last picture we present from this subwindow is Figure (6.1d) for a

value v = .03007. The characteristics of the time oscillations are qualitatively the same as before with

the two loops well separated and with time-period t = 0.88.

We next decrease the value of v slightly. A new subwindow is found which develops after a

period-doubling bifurcation at a value of v between .03007 and .030065. The phase-plane curve now

becomes a 4-cycle and in one complete time oscillation the energy has eight turning points, four of

which are maxima and four minima. A characteristic phase-plane curve for bifurcation parameters near

the upper edge of the second subwindow, is Figure (6.2a) which has v = .03006; the time-period is

x = 1.76. The index 4 property Is evident and appears by a slight d-salignment of the phase plane

branches. We also note that at this value of v the maxima of the energy are noticeably different

whereas the minima are almost indistinguishable. Other cases from this subwindow are also given in

Figures (6.2b-d). The value of the viscosity is v = .030015 , .03 , .029998 respectively. The period is

1.76 and the 4-cycle property, characteristic of this subwindow, is very clear. Figure (6.2d), which has

v = .029998 is at the lower edge of the second subwindow and is representative of the dynamics just

before a second period-doubling bifurcation.

Next the value of v was decreased to .0299975; at first sight this v seems to belong to the second

subwindow but a careful inspection of one of the loops shows that a period-doubling takes place some-

where between v = .029998 and .0299975 leading to an estimated time-period of 'T = 3.52 and phase-

plane characteristics for this subwindow of index 8. For smaller values of v the phase-plane loops

begin to drift apart. Figures (6.3a-c) show a sequence of energy phase-plane diagrams for three
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decreasing values of v that belong to this third subwindow; these values are

v = .029995 , .02999 , .0299815. The last computation in this subwindow Is at v = .0299815 and the

period is "t = 3.52.

The next numerical experiment has v = .029981. Once more, careful inspection of the phase-

plane shows that a 16-cycle is obtained and hence another period-doubling bifurcation takes place

somewhere between v = .0299815 and .029981. To sct this one must concentrate, for example, on that

region of the phase plane described by 17.5 < E < 18 and dEldt near zero. Before the period-doubling

bifurcation takes place there is a single branch traced out in the phase-plane while now two branches

are distinguishable within the limits of graphical accuracy. At smaller values of v the branches move

apart and the 16-cycle property is very clearly seen. Figures (6.4a-c) give representative phase-planes

corresponding to a sequence of viscosities which span this fifth subwindow. The bifurcation parameters

are v = .02998 , .029978 , .0299756 respectively. The value v = .0299756 is also the last computation

from this subwindow; the period is t = 7.04.

In Figures (6.5a-d) we present results after another period-doubling occurs. The first case, Figure

(6.5a), has v = .029975 and the phase-plane appears to be a 32-cycle with a period of at least 14.0.

The complexity of the dynamics becomes more cninced as v is decreased even further, and it

becomes very difficult and computationally expensive to try and follow more period-doubling bifurca-

tions than the ones described here. Figures (6.5b-d) give a flavor of the complicated dynamics that one

has to resolve, for the values v = .02997 , .02995 , .0299 respectively.

Computation of the Felgenbaum number.

As mentioned earlier, the results we have from the direct numerical simulation are probably not

extensive enough for an accurate determination of the Feigenbaum number. The lacking ingredient is

the sharp estimation of subwindow boundaries which take on a central role in such a computation. As

a result of this, a straightforward calculation of the ratio of successive subwindow lengths suffers from

certain inaccuracies. For completeness, however, ,-e give the results and stress that they can be

improved by resort to a much more extensive numerical search. If we label the lengths of successive

subwindows by 1i , 1=1,o- then the following ratios are obtained from the results of Table 4 :

12/11t = 5.42, 13/12 = 11.35 and W1l3 = 2.77. The cascade is still in its early stages but the distance, in

v-space, of the fourth subwindow lower boundary fiom the point where the strange attractor seems to

commence, is of the order of 10--. Due to the non-sharp classification of the subwindows, the ratios

are only of the same order of magnitude as the universal Feigenbaum constant. Our data is much more

extensive for the 36-mode Galerkin approach and they yield excellent results as we explain next.
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The period-doubling route to chaos is well documented for certain low dimensional models (see

earlier references), but it is believed that the Feigenbaum ;oistant, originally found for iteration maps,

is universal and appears in other high-dimensional systems also. In what follows we present numerical

evidence of this universality for the Kuramoto-Sivashinsky equation. Suppose that period-doublings

take place at some successive values, v. say, of the viscosity parameter. The theory predicts an accu-

mulation of such bifurcation points as n - ,, and in fact the universal constant is given by

lim = V- 4.6692016...
n vn+1 - vn

The obviou3 way to test our results against the theory is to form the successive ratios indicated above,

for our computed subwindow boundaries. The results of this approach are given in Table 5. The first

column of the Table gives our estimate for subwindow boundaries (for example the first two numbers

in the first column show the beginning and end respectively of the first periodic subwindow; the

second and third numbers indicate the beginning and end of the second periodic subwindow etc.), the

second column shows the subwindow length and the third column contains the ratio of successive

subwindow lengths. Note that the cascade develops as we move down the Table and by the time the

third period-doubling bifurcation is attained the geometric ratio of successive bifurcation points is 4.27,

a number already close to Feigenbaum's universal constant. It is worth noting that subwindow lengths

are shrinking significantly and the last subwindow that was computed accurately had a length of

1.3x 10- 7. It is clear, therefore, that the difficulty of the numerical experiments increases as the cascade

develops and some special continuation algorithms were used towards the expediency of our estimates.

Such accuracy measures are essential in the production of four successive bifurcation ratios from the

fourth to the eighth subwindow, which are at an error of at most 4% from the universal constant of

4.669201609.... Various other tests can also be performed using the data. For example we can pick a

subwindow which begins at v,, and which has length I.. Then by use of the computed accumulation

point v, = .029969275 and by assumption of an infinite cascade, it is easy to show that there exists a

geometric ratio

- 1
8 vn - v C

which takes the point v, to the accumulation point vc . The number 8 above, provides then the

"Feigenbaum number" for the chosen subwindow. The theory tells us that as the value of v. is chosen

to be progressively closer to the accumulation point, 8 then converges to the universal constant. This

version of the cascade theory was also applied to our numerical data. The results are similar to those in
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Table 5 but they are slightly more accurate, the gain in accuracy is due to elimination of combination

of errors that a successive ratio inevitably contains. Finally, we also computed the Feigenbaum number,

based on subwindows which are not successive but have a factor of 4 difference in their time-periods.

A ratio is again obtained whose square root should converge to the universal constant after an infinite

number of bifurcations. After eight bifurcation (even less in fact) the numbers obtained are again very

similar to those of Table 5 and we omit further details here.

Finally in this Section we present a brief summary of some of the results obtained for values of v

which take the dynamics beyond the compiete sequence of period-doubling bifurcations just described.

The richness of the attractors is highly enhanced and the regions in parameter-space over which

changes take place become smaller. In this article we choose to describe three additional windows;

these are the chaotic window entered immediately after the period-doublings described above, the

second is a time-periodic attractor, and the third is a region of parameter space that supports chaotic,

steady and time-periodic solutions.

(vii) Window of Chaotic Trajectories. .0252 < v < .029755.

No recognizable patterns are observed either in the energy time series or in the phase planes for

values of the parameter in this window. It should be noted, however, that all the plotted quantities

remain bounded in agreement with the theory ( Constantin et al [81.) See figures (7.la-d).

(viii) Time periodic attractors. 0.023 5 v 5 0.025 1.

Another window with time-periodic attractors and at least three period-doubling bifurcations was

also found. Unlike the previous peiodic window the period starts with small values at the end of the

window - the period at v = 0.023 is t = .26 - and reaches the value t = 2.86 at v = 0.0251 after three

period doublings. The results from this window are summarized in Figures (8.la-c) for a representa-

tive member v = .025.

(ix) Window of Chaotic Trajecto'tes. 7 5 v !5 0.0225.

Chaotic solutions are also found in this subwindow with no recognizable patterns to report. The

ambiguity of the lower bound of this window remains unresolved due to the computational cost of the

required runs but also due to the well-known fact that this is not the last chaotic window to be found.

Window and subwindow lengths become vanishingly smaller thus halting any rational numerical pro-

gress. The discovery of various attractors becomes a hit or miss problem and, for example, in the

range .008 !; v S .0225 we managed to find a strange attractor (v = .0225), a time-periodic attractor

(v = .017), and bimodal steady attractor (v = .015) before another strange attractor is obtained at

v = .008. These results are summarized in Figures (9.la-e). For graphical clarity, the phase-planes in
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this set of Figures were obtained by plotting (E , dEldt) pairs which are separated by a time which is

a large multiple of the time-step.

5. Conclusions.

We have carried out an extensive numerical study of the Kuramoto-Sivashinsky equation. Our

emphasis Is on the characterization of transition to chaos and we restricted ourselves to odd-parity

solutions derived from the same initial conditions and which are easily reproducible by a single com-

puter run. The results for large values of the parameter v, i.e. before chaos or multiple period-

doubling bifurcations, are completely in line with those of previous investigators (see Introduction).

The new behavior we found, and which to our knowledge has not been reported before for the

Kuramoto-Sivashinsky equation, is the computation of several windows which support time-periodic

orbits and which themselves contain other subwindows which are separated by period-doubling bifurca-

tions in parameter space. The third periodic window we found (see Section 4 above) provides substan-

tial numerical evidence of a complete sequence of period-doubling bifurcations before chaos sets in.

Based on our numerical solutions we computed the Feigenbaum number following the first eight bifur-

cations of the cascade, and found excellent agreement with Feigenbaum's universal constant.
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7. Tables.

Overview of the attracting manifolds

Window range Description of the attractors

1 S V < Constant states.

.2475 s v < 1 Fully modal steady attractors.

.0756 5 v 5 .2472 Bimodal steady attractors.

.06697 5 v 5 .0755 Fully modal steady attractors.

.0599 5 v 5 .06695 Trimodal steady attractors.

.055238 5 v < .05985 Periodic attractors.

.03965 s v < .055235 Fully modal steady attractors.

.03735 5 v < .0396 Periodic attractors.

.0344 5 v 5 .037348 Tetramodal steady attractors.

.029756 :5 v 5 .0343 Periodic attractors. Com-

plete period-doubling

sequence towards v=.029756.

.0252 5 v 5 .029755 Chaotic oscillations.

.024 5 v 5 .0251 Periodic attractors. Com-

plete period-doubling

sequence towards v=.02512.

? < v 5 0.023 Chaotic oscillations.

Table 1
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First Periodic Window .0598 ! v : .055238

Viscosity v Period ru Figures

.0598 1.018

.059S 1.03

.059 1.05

.058 1.08

.057 1.13 (2.la,b)

.056 1.18

.0559 1.183 (2.2a,b)

.05585 2.374

.0555 2.48 (2.3a,b)

.0553 2.59

.05525 2.663

.05524 2.729

Table 2
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Second Periodic Window .03735 < v < .0396

Viscosity v Period T Figures

.0396 0.515

.03955 0.533

.0395 0.53

.0393 0.55

.039 0.59

.038 0.68 (4.1a-d)

.03798 0.684

.03795 1.37 (4.2a,b)

.0379 1.38 (4.3a)

.0378 1.40

.0377 1.43 (4.3b-d)

.0376 2.87 (4.4a-d)

.0375 2.95

.0374 3.00

.03738 3.00

.03736 3.01 (4.5a,b)

.037355 1.51

.03735 1.51 (4.5c)

Table 3
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Third Periodic Window .0343 ! v 5 .0299756

Viscosity v Period -r Figures

.0343 .368

.0342 .37 (6.1a)

.032 .44

.0304 .89

.0303 .89 (6.1b,c)

.03007 .88 (6.1d)

.030065 1.76

.03006 1.76 (6.2a)

.030015 1.76 (6.2b)

.03 1.76 (6.2c)

.029998 1.76 (6.2d)

.0299975 3.52

.029995 3.52 (6.3a)

.02999 3.52 (6.3b)

.02998S 3.52

.029983 3.52

.02998 15 3.52 (6.3c)

.029981 7.04

.02998 7.04 (6.4a)

.029979 7.04

.029978 7.04 (6.4b)

.029976 7.04

.0299758 7.04

.0299756 7.04 (6.40)

.029975 14.08 (6.5a)

Table 4
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36-mode Galerkin Expansion

Subwindlow boundary Length Ratio

.034615

.0303175 .0042975

.0300494 .0002681 16.0295

.02998665 .00006275 4.27

.029973005 1.3645X105' 4.6

.02997007 2.935x1OF6 4.65

.029969435 6.35x10 4.62

.029969305 1 .3x iT7  4.88

Table 5
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8. Figures

Figure (1.1) : Steady attracting modal profiles

(a) v = .6 .7 .8 .9.

(b) v-=-.26 .28 .3 .35 .4 .5.

Figure (1.2) : Steady attracting profiles

(a) v = .2 .22 .24 .248 .28.

(b) v =.08 .09 .12 .15 .2.
Figure (1.3) : Steady attracting trimodal profiles

(a) v = .067 .07 .072 .074 .G155 .08

(b) v = .06 .061 .063 .065 .06695.

Figure (2.1) : First periodic window, .0598 < v <.055238

(a) Phase plane of Energy - v = .057.

(b) Energy time series - v = .057.

Figure (2.2) : First time-periodic window, .0598 v <.055238

(a) Phase plane of Energy - v = .0559.

(b) Energy time series - v .0559.

Figure (2.3) : First time-periodic window, .0598:< v 5.055238

(a) Phase plane of Energy - v = .0555.

(b) Energy time series - v = .0555.

Figure (3.1) : Window (iii), fully modal steady attractors, .06697 < v < .0755

(a) Energy against time - v = .0397.

(b) Supremum of u (x,t) against time - v = .0397.
(c) Supremum of d/dx of u(xt) against time - v = .0397.

Figure (4.1) : Second periodic window, time-period t = .68

(a) Energy against time - v = .038.

(b) Phase plane of Energy - v = .038.

(c) First Fourier coefficient against time - v = .038.

(d) Tenth Fourier coefficient against time - v = .038.

Figure (4.2) : Second periodic window, time-period 'r = 1.37

(a) Phase plane of Energy - v = .03795.

(b) Energy time series - v = .03795.

Figure (4.3) : Second periodic window, time-period t = 1.37 to 1.43

(a) Phase plane of Energy - v = .0379.

(b) Phase plane of Energy - v = .0377.
(c) Phase plane of the first Fourier coefficient - v = .0377.

(d) Phase plane of the sixth Fourier coefficient - v = .0377.
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Figure (4.4) : Second periodic window, time-period T = 2.87

(a) Phase plane of Energy - v = .0376.
(b) Time series of sixth Fourier coefficient - v = .0376 .

(c) Phase plane of tie sixth Fourier coefficient - v = .0376.

Figure (4.5) : Second periodic window, period-halving from "r 3.01 to 1.51

(a) Energy time series - v = .03736.

Phase plane of Energy - v = .03736.

Phase plane of Energy - v = .03735

Figure (4.6) : Second periodic window :

Evolution of the spatial profile in the periodic attractor - v = .039.

Figure (4.7) : Second periodic window :
Evolution of the spatial profile in the periodic attractor - v = .0375.

Figure (5.1) : Window (y), steady tetramodal attractors, .0344 < v < .037348

(a) Energy time series - v = .0373.

(b) Steady tetramodal attracting profile - v = .0373.

Figure (6.1) : Third periodic window, first period-doubling

(a) Phase plane of Energy - v = .0342.

(b) Phase plane of Energy - v = .0303.

(c) Energy time series - v = .0303.

(d) Phase plane of Energy - v = .03007

Figure (6.2) : Third periodic window, second period-doubling

(a) Phase plane of Energy - v = .03006.

(b) Phase plane of Energy - v = .030015.

(c) Phase plane of Energy - v = .03 .

(d) Phase plane of Energy - v = .029998.

Figure (6.3) : Third periodic window, third period-doubling:

(a) Phase plane of Energy - v = .029995.
(b) Phase plane of Energy - v = .02999.

(c) Phase plane of Energy - v = .0299815.

Figure (6.4) : Third periodic window, fourth period-doubling

(a) Phase plane of Energy - v = .02998.

(b) Phase plane of Energy - v = .029978.

(c) Phase plane of Energy - v = .0299756.
Figure (6.5) : Third periodic window, fifth period-doubling:

(a) Phase plane of Energy - v = .029975.

(b) Phase plane of Energy - v = .02997.

(c) Phase plane of Energy - v = .02995
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(d) Phase plane of Energy - v = .0299.

Figure (7.1) : Chaotic windows, .0252 : v : .029755

(a) Energy time series (Chaotic case) - v = .028.

(b) Energy time series (Chaotic case) - v = .027.

(c) Energy time series (Chaotic case) - v = .0255.

(d) Energy time series (Chaotic case) - v = .0252.

Figure (8.1) : Time-periodic attractors, .023 <: v : .0251
(a) Energy time series (Periodic case) - v = .025

(b) Energy time series (Blow-up) - v = .025.

(c) Phase plane of Energy - v = .025.

Figure (9.1) : Chaotic windows, ? < v < .0255

(a) Phase plane of Energy (Chaotic case) - v = .0225

(b) Phase plane of Energy (Periodic case) v = .017.

(c) Energy time series (Periodic case) - v = .017.
(d) Energy time series (Bimodal steady attractor) - v = .015

(e) Phase plane of Energy (Chaotic case) - v = .008
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Figure (1.2)
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Steody ottr]cling profiles -- v= .08 .09 .12 .15 .2

6 4A f.,

T f y y .

t4Y _ 4rY "

T

Ay y 6I AT

,fly AT

AT A V A

i -. (b)
0°

J AA, .' * A

2:

IT..A A ..

IT ;'* JI . ,.yJ

i^ * V *^ V

Y. Y o

A TA rV
V

AA y

T A y

iA le .()! Do -. )*AI "ts-: 1 r(n l -.

A I

0 12 5
(I le-.0 Oot=.09 Y= . 1 2 HIljsz- .15 1 triongle .2



-32-

Figure (1.3)
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Phase plane for Energy at v=.03795
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Figure (4.6)

E~volution of (ie profile within three timte periods
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Figure (4.7)

Evoliion of the profile In a periodic attractor
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